Nathan Skolski

Email: nathanskolski@okmain.cms.ok.ubc.ca


 

A photo of Klinse-Za caribou feeding.

In partnership with many organizations and governments, a new Indigenous-led conservation initiative has helped improve a Klinse-Za caribou population. Photo credit: Line Giguere, Wildlife Infometrics

Despite recovery efforts from federal and provincial governments, caribou populations across Canada continue to decline, largely due to human activity.

But as a new UBC Okanagan study finds, in central British Columbia there is one herd of mountain caribou, the Klinse-Za, whose numbers are going in the opposite direction—all thanks to a collaborative recovery effort led by West Moberly First Nations and Saulteau First Nations.

In partnership with many organizations and governments, the Indigenous-led conservation initiative paired short-term recovery actions such as predator reduction and caribou guardians at maternal pens, with ongoing work to secure landscape-level protection in an effort to create a self-sustaining caribou population.

Their efforts paid off.

Dr. Clayton Lamb, a Liber Ero Fellow, along with Carmen Richter, a biology master’s student, and Dr. Adam T. Ford, Canada Research Chair in Wildlife Restoration Ecology, conduct research in the Irving K. Barber Faculty of Science. Their latest study shows Klinse-Za caribou numbers have nearly tripled in under a decade.

“We have an Indigenous-led conservation effort to thank for averting the looming extinction of this herd,” says Dr. Lamb. “The population was declining rapidly—a West Moberly Elder once described the herd as a ‘sea of caribou,’ but by 2013 it had declined to only 38 animals.”

Today, the herd count is more than 110 and numbers continue to rise.

“This work provides an innovative, community-led, paradigm shift to conservation in Canada,” Dr. Lamb says. “While Indigenous Peoples have been actively stewarding landscapes for a long time, this approach is new in the level of collaboration among western scientists and Indigenous Peoples to create positive outcomes on the land and put an endangered species on the path to recovery.”

Richter, who is a Saulteau First Nations member, says Indigenous communities have really come together for the good of the caribou.

“We are working hard to recover these caribou. Each year, community members pick bags and bags of lichen to feed the mother caribou in the pen while other members live up at the top of the mountain with the animals. One day, we hope to return the herds to a sustainable size,” she says.

Though the partnership has yielded great success, Dr. Ford is the first to acknowledge that more time and effort will be needed to fully recover the Klinse-Za.

“This work is also an important part of decolonizing the mindset of conservation, which has historically worked to exclude the views of Indigenous Peoples,” he adds.

With caribou declines exceeding 40 per cent in recent decades across Canada, many populations have already been lost. But Dr. Ford insists there is a brighter path forward, and this study proves it.

“This is truly an unprecedented success and signals the critical role that Indigenous Peoples can play in conservation,” he says. “I hope this success opens doors to collaborative stewardship among other communities and agencies. We can accomplish so much more when working together.”

This study was co-produced by western scientists and members of West Moberly First Nations and Saulteau First Nations. The work was recently published in Ecological Applications and is supported by a companion manuscript in Ecological Applications exploring the expeditious population growth.

The post Caribou herd rebounds as Indigenous stewards lead conservation efforts appeared first on UBC's Okanagan News.

A photo of Klinse-Za caribou feeding.

In partnership with many organizations and governments, a new Indigenous-led conservation initiative has helped improve a Klinse-Za caribou population. Photo credit: Line Giguere, Wildlife Infometrics

Despite recovery efforts from federal and provincial governments, caribou populations across Canada continue to decline, largely due to human activity.

But as a new UBC Okanagan study finds, in central British Columbia there is one herd of mountain caribou, the Klinse-Za, whose numbers are going in the opposite direction—all thanks to a collaborative recovery effort led by West Moberly First Nations and Saulteau First Nations.

In partnership with many organizations and governments, the Indigenous-led conservation initiative paired short-term recovery actions such as predator reduction and caribou guardians at maternal pens, with ongoing work to secure landscape-level protection in an effort to create a self-sustaining caribou population.

Their efforts paid off.

Dr. Clayton Lamb, a Liber Ero Fellow, along with Carmen Richter, a biology master’s student, and Dr. Adam T. Ford, Canada Research Chair in Wildlife Restoration Ecology, conduct research in the Irving K. Barber Faculty of Science. Their latest study shows Klinse-Za caribou numbers have nearly tripled in under a decade.

“We have an Indigenous-led conservation effort to thank for averting the looming extinction of this herd,” says Dr. Lamb. “The population was declining rapidly—a West Moberly Elder once described the herd as a ‘sea of caribou,’ but by 2013 it had declined to only 38 animals.”

Today, the herd count is more than 110 and numbers continue to rise.

“This work provides an innovative, community-led, paradigm shift to conservation in Canada,” Dr. Lamb says. “While Indigenous Peoples have been actively stewarding landscapes for a long time, this approach is new in the level of collaboration among western scientists and Indigenous Peoples to create positive outcomes on the land and put an endangered species on the path to recovery.”

Richter, who is a Saulteau First Nations member, says Indigenous communities have really come together for the good of the caribou.

“We are working hard to recover these caribou. Each year, community members pick bags and bags of lichen to feed the mother caribou in the pen while other members live up at the top of the mountain with the animals. One day, we hope to return the herds to a sustainable size,” she says.

Though the partnership has yielded great success, Dr. Ford is the first to acknowledge that more time and effort will be needed to fully recover the Klinse-Za.

“This work is also an important part of decolonizing the mindset of conservation, which has historically worked to exclude the views of Indigenous Peoples,” he adds.

With caribou declines exceeding 40 per cent in recent decades across Canada, many populations have already been lost. But Dr. Ford insists there is a brighter path forward, and this study proves it.

“This is truly an unprecedented success and signals the critical role that Indigenous Peoples can play in conservation,” he says. “I hope this success opens doors to collaborative stewardship among other communities and agencies. We can accomplish so much more when working together.”

This study was co-produced by western scientists and members of West Moberly First Nations and Saulteau First Nations. The work was recently published in Ecological Applications and is supported by a companion manuscript in Ecological Applications exploring the expeditious population growth.

The post Caribou herd rebounds as Indigenous stewards lead conservation efforts appeared first on UBC's Okanagan News.

A helicopter dumping water on a forest wildfire

A helicopter attacks a wildfire from above.

A team of scientists, including UBC Okanagan’s Dr. Mathieu Bourbonnais, have prepared a white paper detailing a game plan for western Canada to reduce wildfire risk and prevent “crisis seasons” like the one British Columbia is currently facing.

Applying their decades of experience in wildland fire management, fire ecology, climate change research and on-the-ground operations, the paper’s authors describe in detail the crisis western Canada is facing and suggest a course of action to reduce the adverse consequences of future wildfires.

Dr. Bourbonnais is an Assistant Professor in the Irving K. Barber Faculty of Science’s Department of Earth, Environment and Geographic Sciences. Before becoming a faculty member, Dr. Bourbonnais spent years working as a wildland firefighter and now, more than ever, he and his collaborators from the Indigenous community, academia, government and industry, are worried about forest conditions and say we need to do far more to proactively reduce wildfire risk.

Beyond the immediate threat to homes and people, what is the bigger issue that needs to be addressed when it comes to wildfires?

The numbers are staggering. We’re potentially talking about hundreds to thousands of premature deaths due to smoke impacts on human health, tens to hundreds of millions of tonnes of greenhouse gas emissions further complicating efforts to mitigate climate change — not to mention the billions of dollars in increased suppression and indirect fire costs negatively impacting the social, cultural and political fabric of society.

By 2050, years like 2017–2018 in BC and 2016–2019 in Alberta will be commonplace. Already, we are seeing evidence of another record-setting year in BC, with numerous fires and evacuation orders resulting in a state of emergency. Climate change and fire science experts insist there is a very limited window — the next decade — in which society can positively alter the crisis.

Is our current approach to wildfires sustainable?

No. The shockingly high costs of recent fire events and seasons will be completely unsustainable if allowed to continue unabated. Recent catastrophic wildfires, including the 2016 Fort McMurray wildfire, the 2017–2018 fire seasons in B.C. and the 2019 fire season in Alberta, accounted for more than $10 billion in direct losses, billions of dollars in fire suppression costs and tens of billions of dollars more in indirect costs in each of these events. We haven’t even fully considered the loss of the entire town of Lytton this summer and it is difficult to quantify the adverse social, cultural, physical and mental health impacts due to the loss of life, and evacuations resulting from fire and widespread smoke.

How did we get here — is it just about climate change?

Climate change plays a big role, but it is much more complicated. Although images from Lytton, Fort McMurray, California and Australia remind us of the potentially devastating effects of wildfire on people and infrastructure, we forget that wildfires are an important part of our ecosystems and how we manage landscapes directly contributes to the current wildfire crisis. But society has never been more vulnerable. More people are living in fire-prone areas and a changing climate is lengthening the fire season and creating more extreme weather conditions.

In the past, much of the “wildfire problem” was pegged on either wildland fire management agencies or the forest sector. This perspective has led to a decades-long discussion on how to maximize fire protection by integrating fire and forest management activities. This paradigm is simplistic and insufficient, because wildfires affect so many facets of our society and environment including health, the economy, biodiversity, ecosystem function and more. Wildland fire management must engage additional proponents, including Indigenous peoples, industry and communities, to help people learn to live with the realities of landscapes and ecological systems that include wildfires but, over time, work to reduce their more catastrophic effects.

What needs to be done? How can we protect the forests, citizens and communities of western Canada and beyond?

The challenge lies in creating a realistic plan we can readily implement while acknowledging existing interests and resources. Can we imagine an effective wildfire reduction strategy surviving both the political and market-based changes witnessed in North America during the past four years, along with the financial realities of burgeoning government debt? Yes, by integrating adaptability and defining milestones to serve as indicators for both progress and course correction, we have a chance for meaningful change.

Simply put, what’s the major recommendation coming from this white paper?

The answer is not another Royal Commission or task force. We know enough about the actions that should be taken, especially in recognizing the climate change emergency facing western North America.

Knowledge gaps and uncertainty surrounding wildfire mitigation are real but should not impede action. This includes, but is not limited to, the effects of forest thinning, prescribed burning, tree planting, rehabilitation and restoration work, as well as developing strategies to deal with the immense quantities of fuel that need to be removed from our forests in ecologically sustainable ways.

To solve this crisis, we need a new kind of strategic plan — one that spans multiple decades and is national and international in scope yet meaningfully involves local and provincial/state governments. It is critical that these efforts receive nonpartisan political support, are founded on principles of ecosystem function and resilience, and are inclusive and adaptable. A plan also needs to be responsive to the needs of business and government while creating a social licence to operate that includes input from the general public, Indigenous peoples, and a wide range of NGOs.

The post Scientists say current wildfire situation is beyond a ‘crisis’ appeared first on UBC's Okanagan News.

UBCO researchers used computer modelling to simulate the movement of black bears and identify what attracts them to populated areas.

UBCO researchers used computer modelling to simulate the movement of black bears and identify what attracts them to populated areas.

Computer modelling shows reducing attractants most effective in keeping bears away

Conservationists have long warned of the dangers associated with bears becoming habituated to life in urban areas. Yet, it appears the message hasn’t gotten through to everyone.

News reports continue to cover seemingly similar situations — a foraging bear enters a neighbourhood, easily finds high-value food and refuses to leave. The story often ends with conservation officers being forced to euthanize the animal for public safety purposes.

Now, a new study by sustainability researchers in the Irving K. Barber Faculty of Science uses computer modelling to look at the best strategies to reduce human-bear conflict.

“It happens all the time, and unfortunately, humans are almost always at fault,” says study co-author Dr. Lael Parrott.

Looking to reduce the number of conflicts, Dr. Parrott and a team of researchers, including master’s student Luke Crevier, built a computer model to simulate bears’ journeys within a specific urban area.

Their goal was to find the best way to keep bears out.

Using the resort municipality of Whistler as their area of inquiry, the team partnered with Margo Supplies, a wildlife management technology solutions company based in High River, Alberta. Using agent-based computer modelling, researchers were able to simulate the movement of black bears in and around Whistler, identifying the potential attractants luring them in.

“Our model allows us to drop in large amounts of data, including the landscape’s spatial characteristics, movement patterns collected from GPS tracking of real bears, and other important information to essentially create a virtual landscape,” says Crevier.

The problem, he adds, is that bears are attracted to what researchers call anthropogenic food — easily attainable food sources such as human garbage, berries or fruit.

“We were able to track the model bears as they moved through the landscape and interacted with different cells in the software that represented anthropogenic food, vegetation and human deterrents. The ability to input all of these proxies allowed us to better understand where they’re roaming, why, and test different strategies within the simulation to find the most effective way to keep them out.”

The study’s findings reinforced the team’s expectations that using attractant reduction and human deterrent strategies together was the most effective way to keep bears away. In cases where only one strategy could be applied, reducing attractants was the most effective.

“These results confirm that the most commonly used management strategies are indeed the most effective,” explains Crevier. “What was really interesting was how the model allowed us to identify attractants that maybe otherwise wouldn’t be considered — like human garbage or large amounts of berries on private land within city limits.”

A bear’s intelligence and memory are largely the reasons why reducing the availability of anthropogenic food is considered more effective than reactive management strategies that aim to deter bears, when used alone.

“Using deterrents like bear bangers may be effective temporarily in that the bear will get frightened and run away, but they won’t be gone for long,” explains Dr. Parrott. “They’ll remember being scared off, but their memories of the good meal will supersede their fear.”

Though Whistler was selected as the study location because of the large number of black bears venturing into town, Crevier says this same type of modelling can be used for communities across Canada experiencing similar issues.

“What’s cool about this model is it allows us to look at how different management strategies interact with each other, and this type of model can also be applied to better understand the movements of other large predators like cougars or wolves,” he adds.

Dr. Parrott stresses it is important to learn how to co-exist with wildlife in a way that’s safe for all — including the animals. While some people may not think twice about a neighbourhood bear being destroyed, the practice has far-reaching implications.

“We know that bears who tend to come into communities are often juvenile or female bears with cubs, because the large males already have all the ‘good spots’ and have established their territories,” she explains. “That’s cause for concern because it means the females are teaching their cubs techniques to access anthropogenic food. It also means these are the bears who are most often put down, so we’re selectively eliminating a particular part of their population.

The results of this study and similar agent-based models give conservationists another tool in the toolbox to help communities reduce the number of bears entering urban areas, ultimately reducing the number of bears destroyed, and putting the brakes on these problematic trends.”

This study, recently published in Ecological Modelling, was funded by an engage grant from the Natural Sciences and Engineering Research Council of Canada.

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

The post UBCO researchers identify best strategy to reduce human-bear conflict appeared first on UBC's Okanagan News.

UBCO researchers used computer modelling to simulate the movement of black bears and identify what attracts them to populated areas.

UBCO researchers used computer modelling to simulate the movement of black bears and identify what attracts them to populated areas.

Computer modelling shows reducing attractants most effective in keeping bears away

Conservationists have long warned of the dangers associated with bears becoming habituated to life in urban areas. Yet, it appears the message hasn’t gotten through to everyone.

News reports continue to cover seemingly similar situations — a foraging bear enters a neighbourhood, easily finds high-value food and refuses to leave. The story often ends with conservation officers being forced to euthanize the animal for public safety purposes.

Now, a new study by sustainability researchers in the Irving K. Barber Faculty of Science uses computer modelling to look at the best strategies to reduce human-bear conflict.

“It happens all the time, and unfortunately, humans are almost always at fault,” says study co-author Dr. Lael Parrott.

Looking to reduce the number of conflicts, Dr. Parrott and a team of researchers, including master’s student Luke Crevier, built a computer model to simulate bears’ journeys within a specific urban area.

Their goal was to find the best way to keep bears out.

Using the resort municipality of Whistler as their area of inquiry, the team partnered with Margo Supplies, a wildlife management technology solutions company based in High River, Alberta. Using agent-based computer modelling, researchers were able to simulate the movement of black bears in and around Whistler, identifying the potential attractants luring them in.

“Our model allows us to drop in large amounts of data, including the landscape’s spatial characteristics, movement patterns collected from GPS tracking of real bears, and other important information to essentially create a virtual landscape,” says Crevier.

The problem, he adds, is that bears are attracted to what researchers call anthropogenic food — easily attainable food sources such as human garbage, berries or fruit.

“We were able to track the model bears as they moved through the landscape and interacted with different cells in the software that represented anthropogenic food, vegetation and human deterrents. The ability to input all of these proxies allowed us to better understand where they’re roaming, why, and test different strategies within the simulation to find the most effective way to keep them out.”

The study’s findings reinforced the team’s expectations that using attractant reduction and human deterrent strategies together was the most effective way to keep bears away. In cases where only one strategy could be applied, reducing attractants was the most effective.

“These results confirm that the most commonly used management strategies are indeed the most effective,” explains Crevier. “What was really interesting was how the model allowed us to identify attractants that maybe otherwise wouldn’t be considered — like human garbage or large amounts of berries on private land within city limits.”

A bear’s intelligence and memory are largely the reasons why reducing the availability of anthropogenic food is considered more effective than reactive management strategies that aim to deter bears, when used alone.

“Using deterrents like bear bangers may be effective temporarily in that the bear will get frightened and run away, but they won’t be gone for long,” explains Dr. Parrott. “They’ll remember being scared off, but their memories of the good meal will supersede their fear.”

Though Whistler was selected as the study location because of the large number of black bears venturing into town, Crevier says this same type of modelling can be used for communities across Canada experiencing similar issues.

“What’s cool about this model is it allows us to look at how different management strategies interact with each other, and this type of model can also be applied to better understand the movements of other large predators like cougars or wolves,” he adds.

Dr. Parrott stresses it is important to learn how to co-exist with wildlife in a way that’s safe for all — including the animals. While some people may not think twice about a neighbourhood bear being destroyed, the practice has far-reaching implications.

“We know that bears who tend to come into communities are often juvenile or female bears with cubs, because the large males already have all the ‘good spots’ and have established their territories,” she explains. “That’s cause for concern because it means the females are teaching their cubs techniques to access anthropogenic food. It also means these are the bears who are most often put down, so we’re selectively eliminating a particular part of their population.

The results of this study and similar agent-based models give conservationists another tool in the toolbox to help communities reduce the number of bears entering urban areas, ultimately reducing the number of bears destroyed, and putting the brakes on these problematic trends.”

This study, recently published in Ecological Modelling, was funded by an engage grant from the Natural Sciences and Engineering Research Council of Canada.

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

The post UBCO researchers identify best strategy to reduce human-bear conflict appeared first on UBC's Okanagan News.

UBCO’s Brendan Dyck is using his geology expertise about planet formation to help identify other planets that might support life. Image Credit: NASA/Goddard Space Flight Center.

UBCO’s Brendan Dyck is using his geology expertise about planet formation to help identify other planets that might support life. Image Credit: NASA/Goddard Space Flight Center.

Findings will help better identify Earth-like planets that could sustain life

Astronomers have identified more than 4,000, and counting, confirmed exoplanets — planets orbiting stars other than the sun — but only a fraction have the potential to sustain life.

Now, new research from UBC’s Okanagan campus is using the geology of early planet formation to help identify those that may be capable of supporting life.

“The discovery of any planet is pretty exciting, but almost everyone wants to know if there are smaller Earth-like planets with iron cores,” says Dr. Brendan Dyck, assistant professor of geology in the Irving K. Barber Faculty of Science and lead author on the study.

“We typically hope to find these planets in the so-called ‘goldilocks’ or habitable zone, where they are the right distance from their stars to support liquid water on their surfaces.”

Dr. Dyck says that while locating planets in the habitable zone is a great way to sort through the thousands of candidate planets, it’s not quite enough to say whether that planet is truly habitable.

“Just because a rocky planet can have liquid water doesn’t mean it does,” he explains. “Take a look right in our own solar system. Mars is also within the habitable zone and although it once supported liquid water, it has long since dried up.”

That, according to Dr. Dyck, is where geology and the formation of these rocky planets may play a key role in narrowing down the search. His research was recently published in the Astrophysical Journal Letters.

“Our findings show that if we know the amount of iron present in a planet’s mantle, we can predict how thick its crust will be and, in turn, whether liquid water and an atmosphere may be present,” he says. “It’s a more precise way of identifying potential new Earth-like worlds than relying on their position in the habitable zone alone.”

Dr. Dyck explains that within any given planetary system, the smaller rocky planets all have one thing in common — they all have the same proportion of iron as the star they orbit. What differentiates them, he says, is how much of that iron is contained in the mantle versus the core.

“As the planet forms, those with a larger core will form thinner crusts, whereas those with smaller cores form thicker iron-rich crusts like Mars.”

The thickness of the planetary crust will then dictate whether the planet can support plate tectonics and how much water and atmosphere may be present, key ingredients for life as we know it.

“While a planet’s orbit may lie within the habitable zone, its early formation history might ultimately render it inhabitable,” says Dr. Dyck. “The good news is that with a foundation in geology, we can work out whether a planet will support surface water before planning future space missions.”

Later this year, in a joint project with NASA, the Canadian Space Agency and the European Space Agency, the James Webb Space Telescope (JWST) will launch. Dr. Dyck describes this as the golden opportunity to put his findings to good use.

“One of the goals of the JWST is to investigate the chemical properties of extra-solar planetary systems,” says Dr. Dyck. “It will be able to measure the amount of iron present in these alien worlds and give us a good idea of what their surfaces may look like and may even offer a hint as to whether they’re home to life.”

“We’re on the brink of making huge strides in better understanding the countless planets around us and in discovering how unique the Earth may or may not be. It may still be some time before we know whether any of these strange new worlds contain new life or even new civilizations, but it’s an exciting time to be part of that exploration.”

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

The post UBCO researcher uses geology to help astronomers find habitable planets appeared first on UBC's Okanagan News.

Aerial view of UBC Okanagan

Projects will look at improving N95 masks, mental health and well-being

The BC Ministry of Health is investing in BC Interior research universities to understand the harmful effects of COVID-19 and mitigate its impact on communities across the province.

The province has funded five collaborative research projects through the Interior University Research Coalition (IURC), a partnership between Thompson Rivers University (TRU) in Kamloops, the University of British Columbia, Okanagan (UBCO) in Kelowna and the University of Northern British Columbia (UNBC) in Prince George.

The projects being funded range from identifying the effects of the pandemic on the mental health and well-being of people living in rural communities to developing telehealth programs that will engage older adults outside urban centres. Other projects include a focus on improving the lifespan of N95 masks, as well as building a better understanding of whether new technologies are improving the resiliency of rural health-care practitioners.

“This is a win-win-win situation for the province, for the universities, and for the communities we serve in terms of the impact this research will have on the health and quality of life for the people who live there,” says Will Garrett-Petts, associate vice-president, research and graduate studies at TRU.

He adds that the IURC has developed a model that can ensure responsible and innovative research.

“The work we’re doing is meaningful and is guided by the interests of the local and regional communities,” he says. “This is a wonderful model of collaboration, and one we are collectively celebrating.”

UBC Okanagan’s Vice-Principal and Associate Vice-President for Research and Innovation Phil Barker agrees. He says his campus is especially excited to be working on an initiative that is highly collaborative and that spans campuses and institutions across the BC interior.

“We’re delighted that the BC Ministry of Health is investing in this initiative to help mitigate the effects of COVID-19 throughout our province,” explains Barker. “Our researchers have been able to mobilize quickly through the tri-university partnership and each of the selected projects will leverage our respective strengths to serve communities across BC.”

The BC Ministry of Health has provided the IURC with $150,000 to launch this initiative. The IURC was established in 2017 to advance the research and innovation capacity and commercialization potential of the BC Interior and create new opportunities for economic and social innovation. The inaugural funding is focused largely on COVID-19 issues that affect the BC Interior but the results from these projects will help support regional and provincial health care decision-making and provide real-world opportunities for students to gain experience in the complex, ever-changing realm of health care.

“When researchers from different institutions collaborate across disciplines, the research outcomes benefit from different perspectives and synergies that result from cross-institutional collaboration,” says Kathy Lewis, acting vice-president of research at UNBC. “These projects are fantastic examples of what’s possible when researchers from across the BC Interior come together and seek solutions to pressing public health concerns.”

About the projects

  • Shannon Freeman, associate professor in UNBC’s School of Nursing, has partnered with Piper Jackson, assistant professor of computer science at TRU, to develop a COVID-19 risk assessment tool that identifies homecare clients who are at greatest risk of contracting the virus.
  • Jian Liu and Abbas Milani of UBCO’s School of Engineering will be working with Hossein Kazemian of UNBC to improve the lifespan of nanofibres and activated carbon mats in N95 masks.
  • Brodie Sakakibara, assistant professor in UBCO’s Southern Medical Program and investigator in the Centre for Chronic Disease Prevention and Management, is working with researchers at UBCO, UNBC and Interior Health to create a student-delivered Community Outreach Telehealth Program that will engage older adults from outside urban centres and establish best practices for providing health support during a pandemic.
  • TRU’s Bala Nikku has teamed up with Khalad Hasan from UBCO and Rahul Jain from UNBC to better understand whether new technologies are improving the resiliency of rural health care practitioners.
  • Nelly Oelke, associate professor in UBCO’s School of Nursing and scientific director of the Rural Coordination Centre of BC, will be collaborating with UBCO’s Donna Kurtz, UNBC’s Davina Banner-Lukaris and TRU’s Bonnie Fournier to expand ongoing research that explores the mental health impacts of climate change events. The new study will identify the effects of the pandemic on the mental health and well-being of people living in rural communities to help foster resilience.

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

The post Province partners with Interior universities for COVID-19 research solutions appeared first on UBC's Okanagan News.

Aerial view of UBC Okanagan

Projects will look at improving N95 masks, mental health and well-being

The BC Ministry of Health is investing in BC Interior research universities to understand the harmful effects of COVID-19 and mitigate its impact on communities across the province.

The province has funded five collaborative research projects through the Interior University Research Coalition (IURC), a partnership between Thompson Rivers University (TRU) in Kamloops, the University of British Columbia, Okanagan (UBCO) in Kelowna and the University of Northern British Columbia (UNBC) in Prince George.

The projects being funded range from identifying the effects of the pandemic on the mental health and well-being of people living in rural communities to developing telehealth programs that will engage older adults outside urban centres. Other projects include a focus on improving the lifespan of N95 masks, as well as building a better understanding of whether new technologies are improving the resiliency of rural health-care practitioners.

“This is a win-win-win situation for the province, for the universities, and for the communities we serve in terms of the impact this research will have on the health and quality of life for the people who live there,” says Will Garrett-Petts, associate vice-president, research and graduate studies at TRU.

He adds that the IURC has developed a model that can ensure responsible and innovative research.

“The work we’re doing is meaningful and is guided by the interests of the local and regional communities,” he says. “This is a wonderful model of collaboration, and one we are collectively celebrating.”

UBC Okanagan’s Vice-Principal and Associate Vice-President for Research and Innovation Phil Barker agrees. He says his campus is especially excited to be working on an initiative that is highly collaborative and that spans campuses and institutions across the BC interior.

“We’re delighted that the BC Ministry of Health is investing in this initiative to help mitigate the effects of COVID-19 throughout our province,” explains Barker. “Our researchers have been able to mobilize quickly through the tri-university partnership and each of the selected projects will leverage our respective strengths to serve communities across BC.”

The BC Ministry of Health has provided the IURC with $150,000 to launch this initiative. The IURC was established in 2017 to advance the research and innovation capacity and commercialization potential of the BC Interior and create new opportunities for economic and social innovation. The inaugural funding is focused largely on COVID-19 issues that affect the BC Interior but the results from these projects will help support regional and provincial health care decision-making and provide real-world opportunities for students to gain experience in the complex, ever-changing realm of health care.

“When researchers from different institutions collaborate across disciplines, the research outcomes benefit from different perspectives and synergies that result from cross-institutional collaboration,” says Kathy Lewis, acting vice-president of research at UNBC. “These projects are fantastic examples of what’s possible when researchers from across the BC Interior come together and seek solutions to pressing public health concerns.”

About the projects

  • Shannon Freeman, associate professor in UNBC’s School of Nursing, has partnered with Piper Jackson, assistant professor of computer science at TRU, to develop a COVID-19 risk assessment tool that identifies homecare clients who are at greatest risk of contracting the virus.
  • Jian Liu and Abbas Milani of UBCO’s School of Engineering will be working with Hossein Kazemian of UNBC to improve the lifespan of nanofibres and activated carbon mats in N95 masks.
  • Brodie Sakakibara, assistant professor in UBCO’s Southern Medical Program and investigator in the Centre for Chronic Disease Prevention and Management, is working with researchers at UBCO, UNBC and Interior Health to create a student-delivered Community Outreach Telehealth Program that will engage older adults from outside urban centres and establish best practices for providing health support during a pandemic.
  • TRU’s Bala Nikku has teamed up with Khalad Hasan from UBCO and Rahul Jain from UNBC to better understand whether new technologies are improving the resiliency of rural health care practitioners.
  • Nelly Oelke, associate professor in UBCO’s School of Nursing and scientific director of the Rural Coordination Centre of BC, will be collaborating with UBCO’s Donna Kurtz, UNBC’s Davina Banner-Lukaris and TRU’s Bonnie Fournier to expand ongoing research that explores the mental health impacts of climate change events. The new study will identify the effects of the pandemic on the mental health and well-being of people living in rural communities to help foster resilience.

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

The post Province partners with Interior universities for COVID-19 research solutions appeared first on UBC's Okanagan News.

Nobel Night 2016

Annual discussion highlights world-changing discoveries and accomplishments

What: Nobel Night panel discussion with distinguished professors
Who: University researchers discuss the 2020 Nobel Prizes
When: Thursday, December 10, beginning at 7 p.m.
Where: Virtual event on Zoom. Register at NobelNight.ok.ubc.ca

This year, the long-established tradition of Nobel Night at UBC Okanagan will continue, but in a virtual format. The event will be divided into two segments with the main presentation taking place from 7 to 8 p.m. followed by a moderated question and answer session with the panel.

Each presenter has just eight minutes to explain the significance of the work achieved by this year’s winners. The event will be hosted by UBCO’s Deputy Vice-Chancellor and Principal Lesley Cormack and emceed by Phil Barker, vice-principal and associate vice-president of research and innovation.

The Nobel Prize in Physics: 

Alex Hill, assistant professor of astrophysics with the Irving K. Barber Faculty of Science, will highlight the research and findings on black holes conducted by Nobel Prize winners Roger Penrose, Reinhard Genzel and Andrea Ghez.

The Nobel Prize in Chemistry: 

Irving K. Barber Faculty of Science’s Kirsten Wolthers, who teaches biochemistry, chemistry and molecular biology, will discuss the findings of Emmanuelle Charpentier and Jennifer Doudna and their development of a method to edit genomes.

The Nobel Prize in Physiology/Medicine: 

Sarah Brears, regional associate dean of UBCO’s Southern Medical Program will discuss the work of Harvey J. Alter, Michael Houghton and Charles M. Rice—all three share the prize for their work on the hepatitis C virus including new tests and medicines that can save lives.

The Nobel Peace Prize: 

Professor Haroon Akram-Lodhi, editor-in-Chief with the Canadian Journal of Development Studies will speak about significant of the World Food Programme being named the winner of the 2020 Nobel Peace Prize.

The Nobel Prize in Literature: 

Nancy Holmes, associate professor of creative studies and creative writing will talk about poet Louise Glück and her award-winning writing.

Advance registration is required to join this virtual event. Register at NobelNight.ok.ubc.ca

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

 

The post UBC Okanagan hosts virtual Nobel Night event appeared first on UBC's Okanagan News.

Nobel Night 2016

Annual discussion highlights world-changing discoveries and accomplishments

What: Nobel Night panel discussion with distinguished professors
Who: University researchers discuss the 2020 Nobel Prizes
When: Thursday, December 10, beginning at 7 p.m.
Where: Virtual event on Zoom. Register at NobelNight.ok.ubc.ca

This year, the long-established tradition of Nobel Night at UBC Okanagan will continue, but in a virtual format. The event will be divided into two segments with the main presentation taking place from 7 to 8 p.m. followed by a moderated question and answer session with the panel.

Each presenter has just eight minutes to explain the significance of the work achieved by this year’s winners. The event will be hosted by UBCO’s Deputy Vice-Chancellor and Principal Lesley Cormack and emceed by Phil Barker, vice-principal and associate vice-president of research and innovation.

The Nobel Prize in Physics: 

Alex Hill, assistant professor of astrophysics with the Irving K. Barber Faculty of Science, will highlight the research and findings on black holes conducted by Nobel Prize winners Roger Penrose, Reinhard Genzel and Andrea Ghez.

The Nobel Prize in Chemistry: 

Irving K. Barber Faculty of Science’s Kirsten Wolthers, who teaches biochemistry, chemistry and molecular biology, will discuss the findings of Emmanuelle Charpentier and Jennifer Doudna and their development of a method to edit genomes.

The Nobel Prize in Physiology/Medicine: 

Sarah Brears, regional associate dean of UBCO’s Southern Medical Program will discuss the work of Harvey J. Alter, Michael Houghton and Charles M. Rice—all three share the prize for their work on the hepatitis C virus including new tests and medicines that can save lives.

The Nobel Peace Prize: 

Professor Haroon Akram-Lodhi, editor-in-Chief with the Canadian Journal of Development Studies will speak about significant of the World Food Programme being named the winner of the 2020 Nobel Peace Prize.

The Nobel Prize in Literature: 

Nancy Holmes, associate professor of creative studies and creative writing will talk about poet Louise Glück and her award-winning writing.

Advance registration is required to join this virtual event. Register at NobelNight.ok.ubc.ca

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

 

The post UBC Okanagan hosts virtual Nobel Night event appeared first on UBC's Okanagan News.