Nathan Skolski



In partnership with many organizations and governments, a new Indigenous-led conservation initiative has helped improve a Klinse-Za caribou population.

Despite recovery efforts from federal and provincial governments, caribou populations across Canada continue to decline, largely due to human activity.

But as a new UBC Okanagan study finds, in central British Columbia there is one herd of mountain caribou, the Klinse-Za, whose numbers are going in the opposite direction—all thanks to a collaborative recovery effort led by West Moberly First Nations and Saulteau First Nations.

In partnership with many organizations and governments, the Indigenous-led conservation initiative paired short-term recovery actions such as predator reduction and caribou guardians at maternal pens, with ongoing work to secure landscape-level protection in an effort to create a self-sustaining caribou population.

Their efforts paid off.

Dr. Clayton Lamb, a Liber Ero Fellow, along with Carmen Richter, a biology master’s student, and Dr. Adam T. Ford, Canada Research Chair in Wildlife Restoration Ecology, conduct research in the Irving K. Barber Faculty of Science. Their latest study shows Klinse-Za caribou numbers have nearly tripled in under a decade.

“We have an Indigenous-led conservation effort to thank for averting the looming extinction of this herd,” says Dr. Lamb. “The population was declining rapidly—a West Moberly Elder once described the herd as a ‘sea of caribou,’ but by 2013 it had declined to only 38 animals.”

Today, the herd count is more than 110 and numbers continue to rise.

“This work provides an innovative, community-led, paradigm shift to conservation in Canada,” Dr. Lamb says. “While Indigenous Peoples have been actively stewarding landscapes for a long time, this approach is new in the level of collaboration among western scientists and Indigenous Peoples to create positive outcomes on the land and put an endangered species on the path to recovery.”

Richter, who is a Saulteau First Nations member, says Indigenous communities have really come together for the good of the caribou.

“We are working hard to recover these caribou. Each year, community members pick bags and bags of lichen to feed the mother caribou in the pen while other members live up at the top of the mountain with the animals. One day, we hope to return the herds to a sustainable size,” she says.

Though the partnership has yielded great success, Dr. Ford is the first to acknowledge that more time and effort will be needed to fully recover the Klinse-Za.

“This work is also an important part of decolonizing the mindset of conservation, which has historically worked to exclude the views of Indigenous Peoples,” he adds.

With caribou declines exceeding 40 per cent in recent decades across Canada, many populations have already been lost. But Dr. Ford insists there is a brighter path forward, and this study proves it.

“This is truly an unprecedented success and signals the critical role that Indigenous Peoples can play in conservation,” he says. “I hope this success opens doors to collaborative stewardship among other communities and agencies. We can accomplish so much more when working together.”

This study was co-produced by western scientists and members of West Moberly First Nations and Saulteau First Nations. The work was recently published in Ecological Applications and is supported by a companion manuscript in Ecological Applications exploring the expeditious population growth.

The post Caribou herd rebounds as Indigenous stewards lead conservation efforts appeared first on UBC Okanagan News.

A helicopter attacks a wildfire from above.

A team of scientists, including UBC Okanagan’s Dr. Mathieu Bourbonnais, have prepared a white paper detailing a game plan for western Canada to reduce wildfire risk and prevent “crisis seasons” like the one British Columbia is currently facing.

Applying their decades of experience in wildland fire management, fire ecology, climate change research and on-the-ground operations, the paper’s authors describe in detail the crisis western Canada is facing and suggest a course of action to reduce the adverse consequences of future wildfires.

Dr. Bourbonnais is an Assistant Professor in the Irving K. Barber Faculty of Science’s Department of Earth, Environment and Geographic Sciences. Before becoming a faculty member, Dr. Bourbonnais spent years working as a wildland firefighter and now, more than ever, he and his collaborators from the Indigenous community, academia, government and industry, are worried about forest conditions and say we need to do far more to proactively reduce wildfire risk.

Beyond the immediate threat to homes and people, what is the bigger issue that needs to be addressed when it comes to wildfires?

The numbers are staggering. We’re potentially talking about hundreds to thousands of premature deaths due to smoke impacts on human health, tens to hundreds of millions of tonnes of greenhouse gas emissions further complicating efforts to mitigate climate change — not to mention the billions of dollars in increased suppression and indirect fire costs negatively impacting the social, cultural and political fabric of society.

By 2050, years like 2017–2018 in BC and 2016–2019 in Alberta will be commonplace. Already, we are seeing evidence of another record-setting year in BC, with numerous fires and evacuation orders resulting in a state of emergency. Climate change and fire science experts insist there is a very limited window — the next decade — in which society can positively alter the crisis.

Is our current approach to wildfires sustainable?

No. The shockingly high costs of recent fire events and seasons will be completely unsustainable if allowed to continue unabated. Recent catastrophic wildfires, including the 2016 Fort McMurray wildfire, the 2017–2018 fire seasons in B.C. and the 2019 fire season in Alberta, accounted for more than $10 billion in direct losses, billions of dollars in fire suppression costs and tens of billions of dollars more in indirect costs in each of these events. We haven’t even fully considered the loss of the entire town of Lytton this summer and it is difficult to quantify the adverse social, cultural, physical and mental health impacts due to the loss of life, and evacuations resulting from fire and widespread smoke.

How did we get here — is it just about climate change?

Climate change plays a big role, but it is much more complicated. Although images from Lytton, Fort McMurray, California and Australia remind us of the potentially devastating effects of wildfire on people and infrastructure, we forget that wildfires are an important part of our ecosystems and how we manage landscapes directly contributes to the current wildfire crisis. But society has never been more vulnerable. More people are living in fire-prone areas and a changing climate is lengthening the fire season and creating more extreme weather conditions.

In the past, much of the “wildfire problem” was pegged on either wildland fire management agencies or the forest sector. This perspective has led to a decades-long discussion on how to maximize fire protection by integrating fire and forest management activities. This paradigm is simplistic and insufficient, because wildfires affect so many facets of our society and environment including health, the economy, biodiversity, ecosystem function and more. Wildland fire management must engage additional proponents, including Indigenous peoples, industry and communities, to help people learn to live with the realities of landscapes and ecological systems that include wildfires but, over time, work to reduce their more catastrophic effects.

What needs to be done? How can we protect the forests, citizens and communities of western Canada and beyond?

The challenge lies in creating a realistic plan we can readily implement while acknowledging existing interests and resources. Can we imagine an effective wildfire reduction strategy surviving both the political and market-based changes witnessed in North America during the past four years, along with the financial realities of burgeoning government debt? Yes, by integrating adaptability and defining milestones to serve as indicators for both progress and course correction, we have a chance for meaningful change.

Simply put, what’s the major recommendation coming from this white paper?

The answer is not another Royal Commission or task force. We know enough about the actions that should be taken, especially in recognizing the climate change emergency facing western North America.

Knowledge gaps and uncertainty surrounding wildfire mitigation are real but should not impede action. This includes, but is not limited to, the effects of forest thinning, prescribed burning, tree planting, rehabilitation and restoration work, as well as developing strategies to deal with the immense quantities of fuel that need to be removed from our forests in ecologically sustainable ways.

To solve this crisis, we need a new kind of strategic plan — one that spans multiple decades and is national and international in scope yet meaningfully involves local and provincial/state governments. It is critical that these efforts receive nonpartisan political support, are founded on principles of ecosystem function and resilience, and are inclusive and adaptable. A plan also needs to be responsive to the needs of business and government while creating a social licence to operate that includes input from the general public, Indigenous peoples, and a wide range of NGOs.

UBCO researchers used computer modelling to simulate the movement of black bears and identify what attracts them to populated areas.

Computer modelling shows reducing attractants most effective in keeping bears away

Conservationists have long warned of the dangers associated with bears becoming habituated to life in urban areas. Yet, it appears the message hasn’t gotten through to everyone.

News reports continue to cover seemingly similar situations — a foraging bear enters a neighbourhood, easily finds high-value food and refuses to leave. The story often ends with conservation officers being forced to euthanize the animal for public safety purposes.

Now, a new study by sustainability researchers in the Irving K. Barber Faculty of Science uses computer modelling to look at the best strategies to reduce human-bear conflict.

“It happens all the time, and unfortunately, humans are almost always at fault,” says study co-author Dr. Lael Parrott.

Looking to reduce the number of conflicts, Dr. Parrott and a team of researchers, including master's student Luke Crevier, built a computer model to simulate bears’ journeys within a specific urban area.

Their goal was to find the best way to keep bears out.

Using the resort municipality of Whistler as their area of inquiry, the team partnered with Margo Supplies, a wildlife management technology solutions company based in High River, Alberta. Using agent-based computer modelling, researchers were able to simulate the movement of black bears in and around Whistler, identifying the potential attractants luring them in.

“Our model allows us to drop in large amounts of data, including the landscape’s spatial characteristics, movement patterns collected from GPS tracking of real bears, and other important information to essentially create a virtual landscape,” says Crevier.

The problem, he adds, is that bears are attracted to what researchers call anthropogenic food — easily attainable food sources such as human garbage, berries or fruit.

“We were able to track the model bears as they moved through the landscape and interacted with different cells in the software that represented anthropogenic food, vegetation and human deterrents. The ability to input all of these proxies allowed us to better understand where they’re roaming, why, and test different strategies within the simulation to find the most effective way to keep them out.”

The study’s findings reinforced the team’s expectations that using attractant reduction and human deterrent strategies together was the most effective way to keep bears away. In cases where only one strategy could be applied, reducing attractants was the most effective.

“These results confirm that the most commonly used management strategies are indeed the most effective,” explains Crevier. “What was really interesting was how the model allowed us to identify attractants that maybe otherwise wouldn’t be considered — like human garbage or large amounts of berries on private land within city limits.”

A bear’s intelligence and memory are largely the reasons why reducing the availability of anthropogenic food is considered more effective than reactive management strategies that aim to deter bears, when used alone.

“Using deterrents like bear bangers may be effective temporarily in that the bear will get frightened and run away, but they won’t be gone for long,” explains Dr. Parrott. “They’ll remember being scared off, but their memories of the good meal will supersede their fear.”

Though Whistler was selected as the study location because of the large number of black bears venturing into town, Crevier says this same type of modelling can be used for communities across Canada experiencing similar issues.

“What’s cool about this model is it allows us to look at how different management strategies interact with each other, and this type of model can also be applied to better understand the movements of other large predators like cougars or wolves,” he adds.

Dr. Parrott stresses it is important to learn how to co-exist with wildlife in a way that’s safe for all — including the animals. While some people may not think twice about a neighbourhood bear being destroyed, the practice has far-reaching implications.

“We know that bears who tend to come into communities are often juvenile or female bears with cubs, because the large males already have all the ‘good spots’ and have established their territories,” she explains. “That’s cause for concern because it means the females are teaching their cubs techniques to access anthropogenic food. It also means these are the bears who are most often put down, so we’re selectively eliminating a particular part of their population.

The results of this study and similar agent-based models give conservationists another tool in the toolbox to help communities reduce the number of bears entering urban areas, ultimately reducing the number of bears destroyed, and putting the brakes on these problematic trends.”

This study, recently published in Ecological Modelling, was funded by an engage grant from the Natural Sciences and Engineering Research Council of Canada.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit:

UBCO’s Brendan Dyck is using his geology expertise about planet formation to help identify other planets that might support life. Image Credit: NASA/Goddard Space Flight Center.

Findings will help better identify Earth-like planets that could sustain life

Astronomers have identified more than 4,000, and counting, confirmed exoplanets — planets orbiting stars other than the sun — but only a fraction have the potential to sustain life.

Now, new research from UBC’s Okanagan campus is using the geology of early planet formation to help identify those that may be capable of supporting life.

“The discovery of any planet is pretty exciting, but almost everyone wants to know if there are smaller Earth-like planets with iron cores,” says Dr. Brendan Dyck, assistant professor of geology in the Irving K. Barber Faculty of Science and lead author on the study.

“We typically hope to find these planets in the so-called ‘goldilocks’ or habitable zone, where they are the right distance from their stars to support liquid water on their surfaces.”

Dr. Dyck says that while locating planets in the habitable zone is a great way to sort through the thousands of candidate planets, it’s not quite enough to say whether that planet is truly habitable.

“Just because a rocky planet can have liquid water doesn’t mean it does,” he explains. “Take a look right in our own solar system. Mars is also within the habitable zone and although it once supported liquid water, it has long since dried up.”

That, according to Dr. Dyck, is where geology and the formation of these rocky planets may play a key role in narrowing down the search. His research was recently published in the Astrophysical Journal Letters.

“Our findings show that if we know the amount of iron present in a planet’s mantle, we can predict how thick its crust will be and, in turn, whether liquid water and an atmosphere may be present,” he says. “It’s a more precise way of identifying potential new Earth-like worlds than relying on their position in the habitable zone alone.”

Dr. Dyck explains that within any given planetary system, the smaller rocky planets all have one thing in common — they all have the same proportion of iron as the star they orbit. What differentiates them, he says, is how much of that iron is contained in the mantle versus the core.

“As the planet forms, those with a larger core will form thinner crusts, whereas those with smaller cores form thicker iron-rich crusts like Mars.”

The thickness of the planetary crust will then dictate whether the planet can support plate tectonics and how much water and atmosphere may be present, key ingredients for life as we know it.

“While a planet’s orbit may lie within the habitable zone, its early formation history might ultimately render it inhabitable,” says Dr. Dyck. “The good news is that with a foundation in geology, we can work out whether a planet will support surface water before planning future space missions.”

Later this year, in a joint project with NASA, the Canadian Space Agency and the European Space Agency, the James Webb Space Telescope (JWST) will launch. Dr. Dyck describes this as the golden opportunity to put his findings to good use.

“One of the goals of the JWST is to investigate the chemical properties of extra-solar planetary systems,” says Dr. Dyck. “It will be able to measure the amount of iron present in these alien worlds and give us a good idea of what their surfaces may look like and may even offer a hint as to whether they’re home to life.”

“We’re on the brink of making huge strides in better understanding the countless planets around us and in discovering how unique the Earth may or may not be. It may still be some time before we know whether any of these strange new worlds contain new life or even new civilizations, but it’s an exciting time to be part of that exploration.”

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit:

Projects will look at improving N95 masks, mental health and well-being

The BC Ministry of Health is investing in BC Interior research universities to understand the harmful effects of COVID-19 and mitigate its impact on communities across the province.

The province has funded five collaborative research projects through the Interior University Research Coalition (IURC), a partnership between Thompson Rivers University (TRU) in Kamloops, the University of British Columbia, Okanagan (UBCO) in Kelowna and the University of Northern British Columbia (UNBC) in Prince George.

The projects being funded range from identifying the effects of the pandemic on the mental health and well-being of people living in rural communities to developing telehealth programs that will engage older adults outside urban centres. Other projects include a focus on improving the lifespan of N95 masks, as well as building a better understanding of whether new technologies are improving the resiliency of rural health-care practitioners.

“This is a win-win-win situation for the province, for the universities, and for the communities we serve in terms of the impact this research will have on the health and quality of life for the people who live there,” says Will Garrett-Petts, associate vice-president, research and graduate studies at TRU.

He adds that the IURC has developed a model that can ensure responsible and innovative research.

“The work we’re doing is meaningful and is guided by the interests of the local and regional communities,” he says. “This is a wonderful model of collaboration, and one we are collectively celebrating.”

UBC Okanagan’s Vice-Principal and Associate Vice-President for Research and Innovation Phil Barker agrees. He says his campus is especially excited to be working on an initiative that is highly collaborative and that spans campuses and institutions across the BC interior.

“We’re delighted that the BC Ministry of Health is investing in this initiative to help mitigate the effects of COVID-19 throughout our province,” explains Barker. “Our researchers have been able to mobilize quickly through the tri-university partnership and each of the selected projects will leverage our respective strengths to serve communities across BC.”

The BC Ministry of Health has provided the IURC with $150,000 to launch this initiative. The IURC was established in 2017 to advance the research and innovation capacity and commercialization potential of the BC Interior and create new opportunities for economic and social innovation. The inaugural funding is focused largely on COVID-19 issues that affect the BC Interior but the results from these projects will help support regional and provincial health care decision-making and provide real-world opportunities for students to gain experience in the complex, ever-changing realm of health care.

“When researchers from different institutions collaborate across disciplines, the research outcomes benefit from different perspectives and synergies that result from cross-institutional collaboration,” says Kathy Lewis, acting vice-president of research at UNBC. “These projects are fantastic examples of what’s possible when researchers from across the BC Interior come together and seek solutions to pressing public health concerns.”

About the projects

  • Shannon Freeman, associate professor in UNBC’s School of Nursing, has partnered with Piper Jackson, assistant professor of computer science at TRU, to develop a COVID-19 risk assessment tool that identifies homecare clients who are at greatest risk of contracting the virus.
  • Jian Liu and Abbas Milani of UBCO’s School of Engineering will be working with Hossein Kazemian of UNBC to improve the lifespan of nanofibres and activated carbon mats in N95 masks.
  • Brodie Sakakibara, assistant professor in UBCO’s Southern Medical Program and investigator in the Centre for Chronic Disease Prevention and Management, is working with researchers at UBCO, UNBC and Interior Health to create a student-delivered Community Outreach Telehealth Program that will engage older adults from outside urban centres and establish best practices for providing health support during a pandemic.
  • TRU’s Bala Nikku has teamed up with Khalad Hasan from UBCO and Rahul Jain from UNBC to better understand whether new technologies are improving the resiliency of rural health care practitioners.
  • Nelly Oelke, associate professor in UBCO’s School of Nursing and scientific director of the Rural Coordination Centre of BC, will be collaborating with UBCO’s Donna Kurtz, UNBC’s Davina Banner-Lukaris and TRU’s Bonnie Fournier to expand ongoing research that explores the mental health impacts of climate change events. The new study will identify the effects of the pandemic on the mental health and well-being of people living in rural communities to help foster resilience.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit:

Understanding how gut mucus packages microbiota could lead to new ways of disease detection 

Gut mucus. It may not be everyone’s favourite subject, but new research from UBC Okanagan has found it’s more complex and intimately linked to the body’s microbiota than previously thought.

Microbiota is a physiological force made up of microbes—mostly bacteria, fungi and viruses. While it often does good, like extracting energy from diet, warding off pathogens and promoting a healthy immune system, if it’s off-balance, it can also work against the body to promote illnesses like cancer, inflammation and obesity.

Working with colleagues at Oklahoma Medical Research Foundation, UBCO researchers recently published a study in Science examining this new-found relationship, why it matters, and how it may lead to less-invasive disease screening.

Kirk Bergstrom, assistant professor of biology in the Irving K. Barber Faculty of Science.

Kirk Bergstrom is an assistant professor of biology in the Irving K. Barber Faculty of Science and co-lead author of the study.

Let’s talk mucus. What are the misconceptions about it and how is it useful for our bodies?

I think people associate mucus with being sticky, gooey and kind of gross—but in the gut, it’s actually really important physiologically, and can protect from microbiota-driven diseases like cancer and inflammatory bowel disease.

There’s still a lot we don’t know about it, and that’s because it’s really complicated, decorated with thousands of sugar structures we call O-glycans that make up most of the molecule. It’s also hard to access so we could never get a lot of it to study.

Your study provides some new insight into how the mucus system works. Can you elaborate on this?

It was long-thought that mucus was continually produced along the entire length of the gut, especially in the colon, and that it stuck to the tissue to form a barrier to these microbes. It was thought to be immobile and have an overall similar chemical composition throughout.

Our study essentially showed the opposite. We found that the mucus does not attach to tissue, it attaches to the microbiota within the fecal mass, forming a seal around the community as it moves through the colon.  It’s also made up of two chemical sugar ‘flavours’—a dominant one is produced way up in the first part of the colon and the other, previously undiscovered kind, is formed in the lower colon.

What’s also really interesting is that the microbes themselves promote their own sealing by boosting production of the mucus in the first part of the colon. The sugars on this mucus then influence the types of microbes that thrive, the molecules they produce and where they position themselves in the gut.  All this, we believe, promotes their good functions, for example, by preventing unwanted inflammation.

How do your study results help advance knowledge in the field, and what impact could they have for the general public? 

Discovering this connection between mucus, its sugars, and microbes really changes how we view our microbial friends and how they live, move and behave in the gut. This has implications for microbial transmission—once they are packaged up, how does this influence where they ultimately go? How do pathogens escape this sealing and cause disease?

Another really exciting opportunity is that since the mucus system is attached to the fecal mass, this opens the door to easier non-invasive ways of accessing mucus, and that’s going to lead to a better understanding of its chemistry and biology. In line with this, we envision new opportunities for non-invasive biomarker discovery for chronic diseases like inflammatory bowel disease and colon cancer, since changes in the mucus sugars can be early warning signs for disease, we can potentially easily screen from these markers without the need for uncomfortable biopsies and endoscopies.

Where do you go from here? 

These were pre-clinical studies, meaning they were conducted using mouse models, which are essential biologic tools for health researchers. However, our next step is to take these results and replicate them in humans. Actually, our study already shows evidence that a similar mucus formation mechanism is present in humans, but we want to dig deeper to see if microbes influence this as we move forward.

We also want to begin using this new understanding and way of analyzing mucus in fecal samples to explore how things like diet, antibiotics, lifestyle or disease impact the structure and composition of the mucus.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

Bergstrom would like to thank his mentor Lijun Xia, and colleagues Xindi Shan, Wesley Zandberg, Deanna Gibson and Sepideh Pakpour for their contributions to this research.

To find out more, visit:

Telhiqox, in the traditional territories of the Tŝilhqot'in people. Image courtesy Kevin Hanna.

Agreements to strengthen collaborative research partnerships with UBC’s Centre for Environmental Assessment Research

On August 11, a memorandum of understanding (MOU) and an Indigenous Knowledge Protocol Agreement (IK Protocol) were signed by the Tŝilhqot’in Nation and the University of British Columbia. These agreements were led by Chief Russell Myers Ross, Vice Chair of the Tŝilhqot’in National Government (TNG) and Prof. Helen Burt, Associate Vice-President, Research and Innovation at UBC.

The MOU and IK Protocol are a first between UBC and the Tŝilhqot’in Nation and set a path forward for collaboration, cooperation and partnership grounded in respect for the Indigenous Rights of the Tŝilhqot’in Nation.

“The relationship with Kevin Hanna and his team at UBC has worked well, from the original conversations about cumulative effects to working with the Tŝilhqot'in Nation lands department to conduct a variety of useful projects to fill the gaps of understanding the Tŝilhqot'in territory,” says Chief Myers Ross. “The MOU and IK Protocol collectively represent one of many projects from UBC, collaborating with the support of the Indigenous Research Support Initiative (IRSI), to further our research priorities. IRSI has ensured continuity and governance support in fostering the relationship between UBC and the Tŝilhqot'in Nation.”

A key feature of the MOU and IK Protocol is to ensure that research is undertaken with cultural safety, an approach that recognizes and addresses systemic power imbalances and fosters a culture free of racism and discrimination, thus creating a safe arena for Indigenous partners. In addition, the agreements recognize the intellectual property rights of the Tŝilhqot’in knowledge and solidify the Nation’s data ownership and control. Further, the MOU establishes a foundation for future research collaborations that incorporate Tŝilhqot’in knowledge, community needs and sustainable environmental practices and opportunities within Tŝilhqot’in Nen (lands).

UBC and TNG have multiple research collaborations underway, including a number of projects with the Centre for Environmental Assessment Research (CEAR), which is a research centre based at the University of British Columbia’s Okanagan Campus and led by Director, Dr. Kevin Hanna. Current CEAR-TNG research collaborations include Indigenous-led impact assessment, mapping and visualization of landscape change, new approaches and technologies for wildlife monitoring, and water governance.

“This MOU represents an important step forward in the relationship between UBC and the Tŝilhqot’in National Government,” says Dr. Hanna. “We have a unique opportunity to learn from the knowledge and experience of our Tŝilhqot’in colleagues, and to connect the resources and expertise of UBC to a range of historic and emerging environmental and natural resource management challenges in Tŝilhqot’in territory. There is a lot of innovative work we are already doing -- in impact assessment and geospatial science, and more is being planned. But this is very much about connecting different forms of knowledge, creating new collaborative approaches to doing research, and ensuring that the outcomes have value to Tŝilhqot’in communities.”


  • The Tŝilhqot’in Nation is a Dene-speaking Nation comprised of six First Nation communities; Xeni Gwet’in (Nemiah Valley), Tl’etinqox (Anaham), Tl’esqox (Toosey), Yunesit’in (Stone), ʔEsdilagh (Alexandria) and Tsideldel (Redstone). The Tŝilhqot’in Nation is located in central British Columbia and is the first in Canada’s history to secure a court declaration of Aboriginal Title to a portion of their homelands.
  • The University of British Columbia is a global centre for research and teaching, consistently ranked among the top 20 public universities in the world. Since 1915, UBC’s entrepreneurial spirit has embraced innovation and challenged the status quo. UBC encourages its students, staff and faculty to challenge convention, lead discovery and explore new ways of learning. At UBC, bold thinking is given a place to develop into ideas that can change the world.
  • Located on Musqueam territory at UBC’s Point Grey, Vancouver campus, the Indigenous Research Support Initiative (IRSI) at UBC provides professional research support and services to Indigenous communities and university researchers in order that they may undertake collaborative projects based on community-led interests, reciprocal relationships, and principles of mutual accountability and understanding.
  • Located in Syilx Okanagan Nation territory at UBC’s Okanagan campus, the Centre for Environmental Assessment Research (CEAR) at UBC supports research about environmental assessment (EA) processes and methods and helps integrate this information into practice. Research conducted and supported by CEAR contributes to resource development by furthering knowledge about the role that EA plays in helping to advance natural resource management practices that benefit Canadians.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit:

A physician uses data science in healthcare research.

UBCO student drops the books, dons medical gear amid COVID-19 outbreak

Ngan Nguyen Lyle was studying for an upcoming data science quiz when she got the call.

Lyle, a Master of Data Science (MDS) student at UBC Okanagan and medical doctor, was being summoned to return to work to support Interior Health’s COVID-19 response team.

“It wasn’t a tough decision,” she says. “I had been following the outbreak in the media and I was starting to realize that this was something extraordinary. I was already thinking about calling former colleagues to see if I could help before I was contacted.”

With the support of her professors and her physician-husband, Lyle returned to work full-time as an infectious disease doctor at Kelowna General Hospital (KGH) in late-March.

MDS student and medical doctor Ngan Nguyen Lyle.

MDS student and medical doctor Ngan Nguyen Lyle.

Having worked as an internal medicine resident during the 2009 H1N1 epidemic, Lyle had experience working in stressful environments. But this time was different.

“It was incredibly challenging,” she says. “I was asked to help the infection control team who had been working long days for weeks before I arrived—they were exhausted.”

Lyle worked most days on KGH’s COVID-19 floor, supporting staff who were caring for patients with confirmed or suspected infection due to the virus. She also supported staff in the Intensive Care Unit and the emergency department. She also worked in a somewhat investigative role, reviewing virus case files and addressing questions and concerns brought up by staff.

Though Lyle had previously worked in a clinical setting, she’s grateful for the infection control experience that the outbreak provided her.

“It challenged me,” she says. “I really had to try and find a balance and take everything into consideration.”

After five weeks of supporting the COVID-19 response team without any significant surge in cases, Lyle has shifted her focus back to completing her master’s degree.

Though it’s unlikely Lyle will graduate with her classmates due to the volume of work missed, she’s working with professors to make up assignments and plans to complete the program later this year.

“I definitely don’t regret going back to work,” says Lyle. “Graduating is important to me, but when your community is facing a once-in-a-century pandemic, there was no question as to where I was needed most.”

Now that she’s dropped the scrubs and picked up the books again, her goal is to apply the concepts she’s learning in the MDS program to medicine.

Before moving to the Okanagan, Lyle worked as a research fellow at UBC Vancouver studying sepsis—a potentially life-threatening condition caused by the body’s response to an infection.

“I was exposed to data informatics in that role but I didn’t have the quantitative or technical skills to engage in those analyses. I wanted to change that,” she explains. “That’s why I came back to school.”

Though Lyle has found the program challenging due to the heavy focus on mathematics, statistics and computer programming, she says it’s been an enjoyable and eye-opening experience.

“Before MDS I was skeptical of the role artificial intelligence and machine learning could play in healthcare — but now that I understand what’s under the hood, the statistics behind the algorithms, I’m more open to the possibility.”

As for the doctors, nurses and hospital staff Lyle worked alongside to care for COVID-19 patients, she’s still in awe.

“I just want to say that they’re all so dedicated, hardworking and that they deserve recognition too. Healthcare is a community effort.”

UBCO collaborates with BCPA and province to offer psychological first-aid service

All British Columbians now have access to free, psychological first-aid thanks to a collaboration between UBC Okanagan, the BC Psychological Association, and the province.

The service, originally launched for front-line health care workers last week, will now provide telephone-based support to any BC resident experiencing stress, anxiety or uncertainty related to the COVID-19 outbreak.

“We’re expanding this service based on extreme need,” says Lesley Lutes, professor of psychology at UBC Okanagan and registered psychologist. “Every person is being affected by COVID-19, and they deserve access to care.”

Residents seeking assistance can access the service by filling out a short online form on the BCPA website or by calling 604-827-0847. They will then be contacted from one of 200 volunteer registered psychologists within 24 to 48 hours.

Once submitted, they will receive a call from one of 200 volunteer registered psychologists within 24 to 48 hours.

Considered best practice in times of crisis, psychological first-aid is a brief, up to 30-minute, telephone consultation designed to provide information and strategies to help people cope with mental health struggles related to traumatic events.

Lutes points to research following the SARS epidemic in 2003 to demonstrate the mental distress that health emergencies can cause.

“The study found those who experienced quarantine were at a high risk of developing post-traumatic stress disorder (PTSD),” explains Lutes. “What’s even more concerning, is that the longer the quarantine, the higher the risk of PTSD.”

Lutes stresses that by offering services like psychological first-aid early on, the risk of PTSD and other mental health impacts can be reduced.

While confident this service will provide much-needed urgent support for many, Lutes is currently working to identify long-term resources that will provide the care she says British Columbians need.

“Unprecedented times call for unprecedented compassion—and it’s important that we keep helping each other the best we can,” says Lutes.

“Whether it’s the nurse who is going to care for our most sick and vulnerable, the grocery store clerk ensuring shelves are stocked to keep us fed, or families choosing to stay home to stop the spread, we all need to do our part and look after our mental health. We will get through this, together.”

For more information and to register for psychological first-aid, visit the BCPA website or call 604-827-0847.

Rebecca Tyson, associate professor of mathematical biology.

Rebecca Tyson, professor of mathematical biology.

Research links polarization, echo chambers to the spread of disease

Understanding how disease is passed from one individual to another has long been key to protecting populations from diseases like COVID-19. But new research from UBC’s Okanagan campus suggests that polarized opinions and apathy towards taking action can move through society like a virus and can seriously endanger efforts to contain a pandemic.

Rebecca Tyson is a professor of mathematical biology at UBC Okanagan and study lead author. She says that opinions and behaviours—like engaging in frequent hand washing, avoiding physical contact, or taking the threat of a pandemic seriously—can themselves spread throughout society and play an important role in how disease is transmitted during an epidemic.

“While we didn’t have COVID-19 specifically in mind when we conducted our research, we did try to imagine an epidemic that didn’t have a vaccine and that was best prevented by hand washing and other relatively simple actions,” says Tyson. “Behaviours like these can have extremes on either end of the spectrum, from denying the problem and doing nothing to completely isolating oneself.”

Using a mathematical model for both the spread of opinion—or opinion dynamics—and the spread of disease, she and her team were interested in how the presence, distribution and transmission of extreme behaviours can influence the epidemiology of a pandemic. They were particularly interested in how quickly a pandemic can take hold, the infection peak, the final number of those infected and the risk of a second peak.

“Our results show that opinion dynamics have a profound effect on the progression of disease in a population,” says Tyson. “In particular, the state of public opinion at the onset of a pandemic can have enormous influence—either dramatically reducing the fraction of the population that will be infected and the peak epidemic size, or making the epidemic worse than it would be otherwise.”

Tyson points to Hong Kong as an illustrative case of a population that was quick to adopt physical distance rules and were highly compliant with government regulations to eliminate spread, noting that COVID-19 is largely under control there. She adds that other countries, where compliance with government regulations was lower or slower, are having a much harder time.

While she’s quick to point out that her research is focused on mathematical models, she adds that the current COVID-19 outbreak is already showing some of the same outcomes she predicted in her models.

“Our models show that when faith in opinion influencers, like public health officials, is high, extreme preventative behaviours like quarantine and social distancing spread quickly through the population and the pandemic slows,” says Tyson. “This is exactly what we’re seeing in places like Hong Kong, Taiwan, Singapore and South Korea.”

On the other hand, Tyson says that populations that are politically polarized can see the disease spread much more quickly. Extreme behaviours, like disbelief in the problem, are amplified through influencer ‘echo chambers,’ which include mainstream or social media, creating pockets where the disease can spread more quickly.

“I believe this is part of the issue in the United States, where faith in government and public health officials is perhaps weaker than it is elsewhere and where there has been mixed messaging from different levels of government,” Tyson adds.

Looking to the future, she says her model shows that sustained and extreme physical distancing and hygiene behaviours are necessary to keep a highly-infectious disease at bay.

While the research provides a useful model for explaining the evolution of a pandemic, Tyson says that there are limitations.

“We assume things like a well-mixed population and we’re simplifying very complex human behaviour,” she says. “But there are definitely lessons in how opinion can shape the course of a pandemic and how we can leverage media and influencers to help keep public opinion from making a difficult problem worse.”